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non-critical bosonic string. The twisted coset at level one, the topological cigar, is known

to be equivalent to the c = 1 non-critical string at selfdual radius and to the topological

theory on a deformed conifold. In this case, we find that the matrix model double-scaling

limit describes a subset of the full spectrum of the c = 1 theory at selfdual radius. In

particular, it contains operators that do not satisfy the Seiberg bound.
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1. Introduction

Since the work of ’t Hooft [1], which suggests that the large N limit of four-dimensional

SU(N) gauge theory admits a weakly coupled string theory description, there has been

considerable interest in trying to find concrete examples of such a duality, with the hope of

gaining insight and analytical control over non-perturbative phenomena like confinement

and chiral symmetry breaking.

The AdS/CFT correspondence [2] and its generalizations are examples of such gauge/

string dualities. On the string side, however, one is usually limited to the supergravity

approximation due to technical difficulties of dealing with Ramond-Ramond fluxes. Con-

sequently, it is interesting to study examples where one has a better control over the dual

string worldsheet theory and some of these hurdles can be overcome.

In [3, 4], the large N limit of a wide class of four-dimensional N = 1 theories in a

partially confining phase was studied. It was found that the low-energy description of the

theory breaks down close to points in the parameter space where some baryonic and/or

mesonic states become massless. Nevertheless, this can be cured by defining a large N
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double-scaling limit (DSL) where one approaches the singularity by keeping the mass M of

these states fixed. This limit has several interesting features. For example, the conventional

’t Hooft limit leads to a free theory of colour singlet states where all interactions are

suppressed by powers of 1/N . In the present case, the large N Hilbert space splits into two

decoupled sectors, and one of them keeps residual interactions whose strength is inversely

proportional to the mass M . This suggests that the dynamics of this sector has a dual

string description where the string coupling is given by 1/Neff ∼
√

T/M where T is the

tension of the confining string. For some of these models where supersymmetry is actually

enhanced in the DSL from N = 1 to N = 2 or even N = 4, the dynamics of the interacting

subsector can be described by a double-scaled Little String Theory or, via holography, by a

non-critical superstring background with no Ramond-Ramond flux and an exactly solvable

worldsheet theory [8, 9, 5, 10, 6, 7].

The above large N duality proposals are based on an analysis of the F -terms of the

theory, which, following the results of Dijkgraaf and Vafa, is performed by means of an

auxiliary matrix model [11 – 13]. In [4], it was shown that these large N DSLs correspond to

a double-scaling limit of the auxiliary matrix model that is analogous to the double-scaling

limits considered in [14] to study c ≤ 1 systems coupled to 2d gravity. In particular, it was

shown that the double-scaling limits are well-defined in higher genus as well and that the

free energy of the matrix model scales as

Fg ∼ M2−2g . (1.1)

Furthermore, it can be argued [15] on the basis of the Dijkgraaf-Vafa correspondence and

previous studies [19, 18, 16, 17, 8, 9] that the c ≤ 1 system defined by the matrix model DSL

considered in [3] is dual to the topologically twisted version of the non-critical superstring

backgrounds.

In this paper, we pursue the study of the matrix models DSLs introduced in [3], focusing

on those models where the large N double-scaled theory has N = 2 supersymmetry. The

goal is to verify the duality between the matrix model DSLs and the topologically twisted

non-critical superstring backgrounds. This would be a consistency check of the holographic

duality between Little String Theories defined in the proximity of Calabi-Yau singularities

and non-critical superstring backgrounds proposed in [8, 9]. It would also establish a more

direct link between the large N DSLs of [3] and the non-critical superstring backgrounds,

at least at the level of the F-terms.

To achieve this, in section 3, we evaluate loop functions of the double-scaled matrix

model in the planar limit. The rationale here is that from these matrix model loop functions

one can extract genus zero correlation functions of local operators in the dual c ≤ 1

non-critical bosonic theory, as was done in [22] in the case of minimal models coupled

to 2d gravity (see also [20, 21] and [23] for a comprehensive review). The tool we use

is the algorithm developed in [24] to solve the matrix model loop equations. This is

a particularly useful technique because the nature of the singularities is such that the

orthogonal polynomial technique cannot be applied [4].

This is a preliminary step towards verifying that the c ≤ 1 non-critical bosonic string

indeed corresponds to the topologically twisted non-critical superstring background. The
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simplest DSL that can be defined is associated to a conifold singularity and the relative

non-critical superstring background is the N = 2 supersymmetric coset SL(2)k/U(1) at

level k = 1 [18, 16, 17]. In this case, the matrix model DSL is expected to capture the

topological A-twist of this background (the “topological cigar”). The topological cigar was

shown to be equivalent to the c = 1 non-critical bosonic theory at selfdual radius [16]

(see [25 – 27] for a recent analysis), which is equivalent to the topological B model on the

deformed conifold [17].

We will show that in this case the matrix model DSL describes a subset of the full

spectrum of the c = 1 theory at selfdual radius. In particular, it contains operators that do

not satisfy the Seiberg bound. Therefore, at least for the case of the conifold singularity,

we see an explicit relation between the DSL of the Dijkgraaf-Vafa matrix model and the

topologically twisted non-critical superstring backgrounds.

The large N DSLs of [3] are defined in the neighbourhood of Argyres-Douglas-type

singularities. In section 4, we will compare the double-scaled free energy of the matrix

model at genus zero and the prepotential of the relevant N = 2 Seiberg-Witten curve. In

particular, we will evaluate their third derivatives with respect to the glueball superfields

and the N = 2 moduli and find precise agreement upon rescaling as one approaches the

singularity. This is a further check of the duality in the planar limit. We will also suggest

a precise relation between the higher genus terms of the double-scaled matrix model and

the higher genus terms of the N = 2 Seiberg-Witten free energy in a neighbourhood of the

Argyres-Douglas singularity. The Seiberg-Witten partition function in the neighbourhood

of an Argyres-Douglas singularity would then correspond to the matrix model partition

function defined by the near-critical spectral curve, which makes contact with a conjecture

by Nekrasov [61].

2. The matrix model double-scaling limit

In this section, we will review the matrix model singularities and relative double-scaling

limits studied in [3, 4]. Consider an N = 1 U(N) theory with a chiral adjoint field Φ and

superpotential W (Φ). The classical vacua of the theory are determined by the stationary

points of W (Φ)

W (Φ) = N

ℓ+1
∑

i=1

gi

i
TrN Φi . (2.1)

The overall factor N ensures that the superpotential scales appropriately in the ’t Hooft

limit. For generic values of the couplings, we find ℓ stationary points at the zeroes of

W ′(x) = Nε

ℓ
∏

i=1

(x − ai) , ε ≡ gℓ+1 . (2.2)

The classical vacua correspond to configurations where each of the N eigenvalues of Φ takes

one of the ℓ values, {ai}, for i = 1, . . . , ℓ. Thus vacua are related to partitions of N where

Ni ≥ 0 eigenvalues take the value ai with N1 + N2 + . . . Nℓ = N . Provided Ni ≥ 2 for all
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i, the classical low-energy gauge group in such a vacuum is

Ĝcl =

ℓ
∏

i=1

U(Ni) ≈
ℓ

∏

i=1

U(1)i × SU(Ni) . (2.3)

Strong-coupling dynamics will produce non-zero gluino condensates in each non-abelian

factor of Ĝcl. If we define as Wαi the chiral field strength of the SU(Ni) vector multi-

plet in the low-energy theory, we can define a corresponding low-energy glueball superfield

Si = −(1/32π2)〈TrNi
(WαiW

αi)〉 in each factor. Non-perturbative effects generate a super-

potential of the form [28 – 30]

Weff (S1, . . . , Sℓ) =

ℓ
∑

j=1

Nj(Sj log(Λ3
j/Sj) + Sj) + 2πi

ℓ
∑

j=1

bjSj , (2.4)

where the bj are integers defined modulo Nj that label inequivalent supersymmetric vacua.

Dijkgraaf and Vafa argued that the exact superpotential of the theory can be deter-

mined by considering a matrix model with potential W (Φ̂) [11, 12]

∫

dΦ̂ exp
(

−g−1
s Tr W (Φ̂)

)

= exp

∞
∑

g=0

Fg g2g−2
s , (2.5)

where Φ̂ is an N̂ × N̂ matrix in the limit N̂ → ∞. The integral has to be understood

as a saddle-point expansion around a critical point where N̂i of the eigenvalues sit in the

critical point ai. Note that N̂ is not related to the N from the field theory. The glueball

superfields are identified with the quantities

Si = gsN̂i , S =

ℓ
∑

i=1

Si = gsN̂ (2.6)

in the matrix model and the exact glueball superpotential is

Wgb(S1, . . . , Sℓ) =

ℓ
∑

j=1

Nj
∂F0

∂Sj
+ 2πi

ℓ
∑

j=1

bjSj , (2.7)

where F0 is the genus zero free energy of the matrix model in the planar limit.

The central object in matrix model theory is the resolvent

ω(x) =
1

N̂
Tr

( 1

x − Φ̂

)

. (2.8)

At leading order in the 1/N̂ expansion, ω(x) is valued on the spectral curve Σ, in this case

a hyper-elliptic Riemann surface defined by the algebraic relation

y2 =
1

(Nε)2
(

W ′(x)2 + fℓ−1(x)
)

. (2.9)

The numerical prefactor is chosen for convenience. In terms of this curve

ω(x) = W ′(x) − Nεy(x) . (2.10)
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In (2.9), fℓ−1(x) is a polynomial of order ℓ − 1 whose ℓ coefficients are moduli that are

determined by the Si. In general, the spectral curve can be viewed as a double-cover of

the complex plane connected by ℓ cuts. For the saddle-point of interest only s of the cuts

may be opened and so only s of the moduli fℓ−1(x) can vary. Consequently y(x) has 2s

branch points and ℓ − s zeros:1

Σ : y2 = Zm(x)2σ2s(x) (2.11)

where ℓ = m + s and

Zm(x) =
m
∏

j=1

(x − zj) , σ2s(x) =
2s
∏

j=1

(x − σj) . (2.12)

The remaining moduli are related to the s parameters {Si} by (2.6)

Si = gsN̂i = Nε

∮

Ai

y dx , (2.13)

where the cycle Ai encircles the cut which opens out around the critical point ai of W (x).

Experience with the “old” matrix model teaches us that double-scaling limits can exist

when the parameters in the potential are varied in such a way that combinations of branch

and double points come together. In the neighbourhood of such a critical point,2

y2 −→ CZm(x)2Bn(x) , (2.14)

where zj , bi → x0, which we can take, without loss of generality, to be x0 = 0. The

double-scaling limit involves first taking a → 0

x = ax̃ , zi = az̃i , bj = ab̃j (2.15)

while keeping tilded quantities fixed. In the limit, we can define the near-critical curve

Σ−:3

Σ− : y2
− = Z̃m(x̃)2B̃n(x̃) . (2.16)

It was shown in [4], generalizing a result of [3], that in the limit a → 0, in its sense as a

complex manifold, the curve Σ factorizes as Σ−∪Σ+. The complement to the near-critical

curve is of the form

Σ+ : y2
+ = x2m+nF2s−n(x) . (2.17)

where F2s−n(x) is regular when a = 0.

1Occasionally, for clarity, we indicate the order of a polynomial by a subscript.
2We have chosen for convenience to take all the double zeros {zj} into the critical region.
3For polynomials, we use the notation f̃(x̃) =

Q

i
(x̃− f̃i), where f(x) =

Q

i
(x−fi), x = ax̃ and fi = af̃i.
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2.1 Engineering the double-scaling limit on-shell

It is important to stress that the above singularities are obtained on shell [3, 4]. In the

context of supersymmetric gauge theories, the moduli {Si} are fixed by extremizing the

glueball superpotential (2.7). It is not, a priori, clear whether a double-scaling limit can be

reached whilst simultaneously being on-shell with respect to the glueball superpotential.

We will now review the analysis of [3, 4] and show that suitable choices of the coupling

constants {gi} do indeed allow for a double-scaling limit on-shell with respect to the glueball

superpotential. In general, the potentials required are non-minimal. However, this is

irrelevant for extracting the universal behaviour that only depends on the near-critical

curve (2.14).

So the problem before us is to show that the critical point can be reached simultane-

ously with being at a critical point of the glueball superpotential. It is rather difficult to

find the critical points of the latter directly. Fortunately another more tractable method

consists of comparing the matrix model spectral curve (2.9), the “N = 1 curve”, with

the Seiberg-Witten curve of the underlying N = 2 theory that results when the potential

vanishes. The latter has the form

y2
SW = PN (x)2 − 4Λ2N , (2.18)

where PN (x) =
∏N

i=1(x − φi). Here, {φi} are a set of coordinates on the Coulomb branch

of the N = 2 theory and Λ is the usual scale of strong-coupling effects in the N = 2 theory.

When the N = 2 theory is deformed by addition of the superpotential (2.1), it can be

shown that a vacuum exists when the Seiberg-Witten curve and the N = 1 curve represent

the same underlying Riemann surface [28, 31, 32]. In concrete terms this means that,

on-shell,

y2
SW = PN (x)2 − 4Λ2N = HN−s(x)2σ2s(x)

y2 =
1

(Nε)2
(

W ′(x)2 + fs+m−1(x)
)

= Zm(x)2σ2s(x) ,
(2.19)

In these equations, HN−s(x), σ2s(x), Zm(x) are polynomials of the indicated order, and

we choose (in order to remove some redundancies)

HN−s(x) = xN−s + · · · , σ2s(x) = x2s + · · · , Zm(x) = xm + · · · . (2.20)

Both curves describe the same underlying Riemann surface, namely the reduced curve of

genus s− 1 which is a hyper-elliptic double-cover of the complex plane with s cuts. All-in-

all there are 2(N + l) equations for the same number of unknowns in {P,H, σ, Z, f}. There

are many solutions to these equations and we can make contact with the description of the

vacua in section 1 by taking the classical limit Λ → 0; whence

PN (x) →
ℓ

∏

i=1

(x − ai)
Ni ,

ℓ
∑

i=1

Ni = N , (2.21)

so Ni of the eigenvalues of the Higgs field classically lie at the critical point ai of W (x).

Quantum effects then have the effect of opening the points ai into cuts (if Ni > 0). The

number of Ni > 0, i.e the number of cuts, is equal to s = ℓ − m.
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We now to turn to explicit solutions of (2.19). The method we shall adopt is to first

find solutions for a U(p) gauge theory and then apply the “multiplication by N/p map” [32],

with N/p integer. This will yield a solution for a U(N) gauge group and will allow to take

a large N limit with p fixed.

2.2 No double points

We now describe how to engineer the case where the near critical curve (2.14) has no

double points, so m = 0. This is the situation considered in [3, 33, 34]. In this case, we

first consider the consistency conditions (2.19) for a U(p = n) gauge theory with W (x) of

order ℓ = n + 1. In this case, (2.19) are trivially satisfied with

W ′(x) = NεPn(x) , fn−1(x) = −4N2ε2Λ2n . (2.22)

Notice that with our minimal choice of potential, the on-shell curve actually implies that

S = 0 since the coefficient of xn−1 in fn−1(x) vanishes and so the resolvent falls faster than

1/x at infinity. This, of course, is pathological from the point-of-view of the old matrix

model and may be remedied by using a non-minimal potential with extra branch points or

double points outside the critical region. However, in the holomorphic context in which we

are working, having S = 0 is perfectly acceptable and we stick with it. The on-shell curve

consists of an n-cut hyperelliptic curve and one can verify, by taking the classical limit,

that Ni = 1, i = 1, . . . , n. The double-scaling limit involves a situation where n branch

points, one from each of the cuts, come together. This can be arranged by having

W ′(x) = Nε
(

Bn(x) + 2Λn
)

, Bn(x) =

n
∏

j=1

(x − bj) (2.23)

and then taking the limit (2.15). In this case, the near-critical curve Σ− (2.16) is of the

form

y2
− = B̃n(x̃) . (2.24)

The important point is that we can tune to the critical region whilst keeping the theory

on-shell with respect to the glueball superpotential by simply changing the parameters {bj}
which appear in the potential.

Now that we have found a suitable vacuum of a U(n) theory, we now lift this to a

U(N) theory with the multiplication by N/n map [32]. Under this map, the N = 1 curve

remains intact, including the potential W (x) whilst the Seiberg-Witten curve of the U(N)

theory is

y2
SW = PN (x)2 − 4Λ2N = Λ2(N−n)UN

n −1

(Pn(x)

2Λn

)2(
Pn(x)2 − 4Λ2n

)

, (2.25)

where UN
n −1

(x) is a Chebishev polynomial of the second kind. The vacuum of the U(N)

theory has Ni = N/n, i = 1, . . . , n.

Notice that in the near critical region the Seiberg-Witten curve is identical to Σ−, up

to a rescaling:

y2
SW −→

(2N

n

)2
Λ2N−nBn(x) . (2.26)
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This is simply a reflection of the observation of [3] that the decoupled sector has enhanced

N = 2 supersymmetry. Moreover, if C is a cycle which is vanishing as a → 0 then the

integral of the Seiberg-Witten differential around C, which gives the mass of a BPS state

carrying electric and magnetic charges in the theory, becomes
∮

C

xP ′
N (x) dx

ySW
−→ −Λ−n/2Nan/2+1

∮

C
y− dx̃ . (2.27)

Notice that in the double-scaling limit (2.37) (with m = 0) the mass of the state is fixed.

This state is a dibaryon that carries electric and magnetic charges of the IR gauge group.

In the double-scaling limit, therefore, a set of mutually non-local dibaryons become very

light.4 In fact, the Seiberg-Witten curve at the critical point, a = 0, has the form

y2
SW = 4

(N

n

)2
Λ2N−nxn , (2.28)

which describes a Zn or An−1 Argyres-Douglas singularity [35 – 37].

2.3 With double points

For the case with double points, we cannot simply take two of the branch points {bj} in

(2.23) above to be the same. If we simply did that then the zero of the Seiberg-Witten

curve, by which we mean a zero of the polynomial HN−s in (2.19), would also be a zero

of the N = 1 curve as well. By the analysis of [31], this would imply that the condensate

of the associated massless dibaryon is vanishing and the dual U(1) group unconfined. On

the contrary, we need to arrange a situation where any zero of the Seiberg-Witten curve

is not simultaneously a zero of the N = 1 curve, so that the putative massless dibaryon is

condensed and the dual U(1) is confined.

A suitable N = 1 curve which reduces to (2.14) in the near-critical region is

y2 = Zm(x)2Bn(x)
(

Bn(x)Hr(x)2 + 4Λ2r+n
)

. (2.29)

In this case, we have ℓ = m + n + r, s = n + r and

W ′(x) = NεZm(x)Bn(x)Hr(x) , fℓ−1(x) = 4N2ε2Λ2r+nZm(x)2Bn(x) . (2.30)

Notice that in order that fℓ−1(x) has order less than ℓ we require r > m. The curve (2.29)

is actually on-shell with respect to the Seiberg-Witten curve of a U(2r + n) theory with

P2r+n(x) = Hr(x)2Bn(x) + 2Λ2r+n . (2.31)

In the classical limit, we have two eigenvalues at each of the zeros of Hr(x) and one in each

of the zeros of Bn(x). Once again we can employ the multiplication map (2.25) (with n

replaced by 2r + n) to find the vacuum of the U(N) theory we are after.

Notice that the double points of the Seiberg-Witten curve {hi} are not generally zeros

of the curve (2.29), which means that the associated dyons are condensed. The near-critical

curve Σ− in this case is

y2
− = Z̃m(x̃)2B̃n(x̃) , (2.32)

4For n = 2 there is only a single light dibaryon.
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while in the near-critical region the Seiberg-Witten curve becomes

y2
SW −→ 4

( N

n + 2r

)2
Λ2N−2r−nHr(0)

2Bn(x) . (2.33)

where we assumed that the zeros of Hr(x) lie outside the critical region. In this case,

the integral of the Seiberg-Witten differential around a vanishing cycle diverges in the

double-scaling limit:

∮

C

xP ′
N (x) dx

ySW
∼ Nan/2+1 = ∆a−m → ∞ . (2.34)

So in contrast to the case with no double points, the dibaryon states are very heavy. In

addition, the dyon condensate associated to the zero hi of Hr(x) is given by an exact

formula [31]

〈mim̃i〉 = Nεy(hi) ∼ N → ∞ , (2.35)

where we have assumed that hi stays fixed as a → 0. So in the double-scaling limit the

value of the condensate and hence the confinement scale in the dual U(1), or string tension,

occurs at a very high mass scale.

Even though there are no light dibaryons as in the previous example, there is still

an interesting double-scaling limit in the gauge theory due to the presence of other light

mesonic states in the theory with a mass ∼ ∆ [4].

Notice also that contrary to our choice above, if we scale hi → 0 as a → 0 then the

tensions of the confining strings vanish and the theory is at an N = 1 superconformal fixed

point in the infra-red corresponding to one of the N = 1 Argyres-Douglas-type singularities

described in [33]. As the double points of the Seiberg-Witten curve hi move away from the

origin the associated dyons condense and the superconformal invariance is broken.

2.4 Higher genus

In the a → 0 limit, it was shown in [4] that the genus g free energy gets a dominant

contribution from Σ− of the form

Fg ∼
(

Na(m+n/2+1)
)2−2g

. (2.36)

Note that in this equation N is the one from the field theory and not the matrix model N̂ .

This motivates us to define the double-scaling limit (DSL) [3, 4]

a → 0 , N → ∞ , ∆ ≡ Nam+n/2+1 = const . (2.37)

Moreover, the most singular terms in a in (2.36) depend only on the near-critical curve

(2.16) in a universal way.

It was observed in [15] that eq. (2.36) matches the expected behaviour of the topological

B model free energy at the singularity [44]. In fact, as can be seen from (2.14) and (2.15)

∆ ∼ N

∫

y dx . (2.38)
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More precisely, the double-scaling parameter is proportional to the period of the one-form

y dx on one of the cycles that vanish at the singularity. Moreover, this one-form corresponds

to the reduction of the holomorphic 3-form Ω on the underlying Calabi-Yau geometry

uv + y2 = W ′(x)2 + f(x) (2.39a)

Ω =
dudvdx

√

uv − W ′(x)2 − f(x)
. (2.39b)

This comes from the fact that 3-cycles in the Calabi-Yau correspond to S
2 fibered over the

complex x plane. In particular
∫

Ω ∼
∫

y dx , (2.40)

where Ω is integrated on a vanishing 3-cycle in the Calabi-Yau that reduces to one of the

vanishing one-cycles on the matrix mode spectral curve. Putting everything together, we

find that

Fg ∼ ∆2−2g
∼

(∫

y dx

)2−2g

∼

(∫

Ω

)2−2g

(2.41)

which is precisely the behaviour we expect for the free energy of the topological B model

on the Calabi-Yau [44], in agreement with the Dijkgraaf-Vafa correspondence.

2.5 The double-scaling limit of F -terms

In this section, we will review the DSL of various F -terms in the low-energy effective

action derived in [3, 4]. These results were used to argue that, in the case of no double

points, the supersymmetry of the low-energy theory is actually enhanced from four to eight

supercharges. In the next section, we will then compare some of these F-terms with their

counterparts in the corresponding N = 2 theory.

The effective action is written in terms of chiral superfields Sl and wαl which are defined

as gauge-invariant single-trace operators [29]

Sl = − 1

2πi

∮

Al

dx
1

32π2
TrN

[

WαW α

x − Φ

]

,

wαl =
1

2πi

∮

Al

dx
1

4π
TrN

[

Wα

x − Φ

]

.

(2.42)

It will also be convenient to define component fields for each of these superfields,

Sl = sl + θαχα
l + · · · , wαl = λαl + θβfβ

αl + · · · . (2.43)

The component fields, sl and fl are bosonic single trace operators whilst χl and λl are

fermionic single trace operators. In the large-N limit, these operators should create bosonic

and fermionic colour-singlet single particle states respectively. It is instructive to consider

the interaction vertices for these fields contained in the F -term effective action whose

general form is given by [11 – 13]

LF = Im

[
∫

d2θ
(

Wgb + W
(2)
eff

)

]

, (2.44)
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where

W
(2)
eff =

1

2

∑

k,l

∂2F0

∂Sk∂Sl
wαkw

α
l . (2.45)

Expanding (2.44) in components on-shell, we find terms like

∫

d2θ W
(2)
eff ⊃ V

(2)
ij f i

αβfαβj + V
(3)
ijk χi

αfαβjλk
β + V

(4)
ijklχ

i
αχαjλk

βλβl , (2.46)

where

V
(L)
i1i2...iL

=
∂LF0

∂Si1∂Si2 . . . ∂SiL

(2.47)

for L = 2, 3, 4. In the large-N limit, V (L) scales like N2−L. We will also consider the

2-point vertex coming from the glueball superpotential

∫

d2θ Wgb ⊃ H
(2)
ij χi

αχαj , (2.48)

where

H
(2)
ij =

∂2Wgb

∂Si∂Sj
. (2.49)

The matrix H
(2)
ij therefore effectively determines the masses of the chiral multiplets Sl.

Note that, in the large-N limit, H(2) scales like N0.

We begin by considering the couplings V
(2)
ij of the low-energy U(1)s gauge group. Each

of the U(1)’s is associated to one of the glueball fields Si, or equivalently the set of 1-cycles

{Ai} on Σ. If we ignore the U(1) associated to the overall ’t Hooft coupling S, or the cycle

A∞ =
∑s

i=1 Ai which can be pulled off to infinity, the couplings of the remaining ones are

simply the elements of the period matrix of Σ.

In order to take the a → 0 limit, it is useful to choose a new basis of 1-cycles {Ãi, B̃i},
i = 1, . . . , s − 1, which is specifically adapted to the factorization Σ → Σ− ∪ Σ+. The

subset of cycles with i = 1, . . . , [n/2] vanish at the critical point while the cycles i =

[n/2] + 1, . . . , s − 1 are the remaining cycles which have zero intersection with all the

vanishing cycles. If we define the periods on Σ

Mij =

∮

B̃j

xi−1

√

σ(x)
dx , Nij =

∮

Ãj

xi−1

√

σ(x)
dx , (2.50)

then the period matrix, in this basis, is simply

Π = N−1M . (2.51)

In appendix B, we calculate the a → 0 limit of these matrices. The results are summarized

in (B.4) and (B.7). Using these results, we have

Π −→
(

N−1
−−M−− N−1

−−M
(0)
−+ + NM

(0)
++

0
(

N
(0)
++

)−1
M

(0)
++

)

. (2.52)
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Let us look more closely at the structure of each block in the above matrix. First of all,

by (B.2)
(

N−−
)

ij
∼ an/2−j f

(N)
ij (b̃l) ,

(

M−−
)

ij
∼ an/2−j f

(M)
ij (b̃l) , (2.53)

which implies
(

N−−
)−1

ij

(

M−−
)

jk
= f

(N)−1
ij (b̃l)f

(M)
jk (b̃l) = Π−

ik(b̃l) . (2.54)

Furthermore, since N−1
−− vanishes in the limit a → 0, we find that

N−1
−−M

(0)
−+ + NM

(0)
++ = N−1

−− M
(0)
−+ − N−1

−− N
(0)
−+

(

N
(0)
++

)−1
M

(0)
++ → 0 . (2.55)

Therefore, the period matrix has the following block-diagonal form in the DSL

Π −→
(

Π− 0

0 Π+

)

. (2.56)

The upper block Π− is actually the period matrix of the near-critical spectral curve Σ−
(2.16) since the cycles {Ãi, B̃i}, for i ≤ [n/2] form a standard homology basis for Σ−.

Similarly, the lower block Π+ is the period matrix of Σ+. So in the limit a → 0 the curve

Σ factorizes as Σ−∪Σ+. The fact that the period matrix factorizes is evidence of the more

stringent claim that the whole theory consists of two decoupled sectors H− and H+ in the

DSL. Note that although we did not consider it, the U(1) associated to S only couples to

the H+ sector.

We can extend this discussion to include other F -terms that are derived from the

glueball superpotential. For example, consider the 3-point vertex

V
(3)
ijk =

∂3F0

∂S̃i∂S̃j∂S̃k

. (2.57)

Here, the S̃i as defined as in (2.6) but with respect to the cycles Ãi. They are related

to the Si by an electro-magnetic duality transformation. There is a closed expression for

these couplings of the form [41, 42, 39, 43]

V
(3)
ijk =

1

Nε

2s
∑

l=1

Resbl

ωi ωj ωk

dxdy
, (2.58)

where {ωj} are the holomorphic 1-forms normalized with respect to the basis {Ãi, B̃i}. So

we can deduce the behaviour of the couplings from our knowledge of the scaling of ωj.

This is derived in appendix B. We find that the couplings are regular as a → 0, except if

i, j, k ≤ [n/2] in which case,

V
(3)
ijk −→

(

Nεam+n/2+1
)−1

n
∑

l=1

Resσ̃l

ω̃i ω̃j ω̃k

dx̃dy−
, (2.59)

where the {ω̃i} are the one-forms on Σ−. Therefore, in the DSL proposed in (2.37), we find

that these interactions remain finite ∼ ∆−1, while the other 3-point vertices → 0. This

is yet further evidence of the decoupling of the Hilbert space into two decoupled sectors
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where the interactions in the H− sector remain finite in the DSL while those in H+ go to

zero. Notice, also that these interactions of the H− sector depend universally on Σ−.

The final F -term quantity that we consider is the Hessian matrix for the glueball

superfields

H
(2)
jk =

∂2Wgb

∂S̃j∂S̃k

. (2.60)

Using (2.58) we find

H
(2)
jk =

s
∑

i=1

Ni
∂3F0

∂S̃i∂S̃j∂S̃k

=
1

Nε

2s
∑

l=1

Resbl

T ωj ωk

dxdy
, (2.61)

where we have defined the 1-form T

T = Nε
s

∑

i=1

∂y dx

∂Si
. (2.62)

It is known that T can be can be written simply in terms of the on-shell Seiberg-Witten

curve [45]:

T = d log(PN + ySW) . (2.63)

In the limit a → 0, we can take the near-critical expressions for ySW in (2.33) and for

PN (x) = 2ΛN to get the behaviour

T −→ Λ−r−n/2Hr(0)
N

n + 2r
an/2d

√

B̃(x̃) ∼ Nan/2 . (2.64)

We also need

dy −→ am+n/2d
(

Z̃m(x)

√

B̃(x̃)
)

∼ am+n/2 . (2.65)

The scaling of the holomorphic differentials is determined in appendix B.

Counting the powers of N and a, we find that for any j and k, H
(2)
jk goes like an

inverse power of a and hence diverges in the DSL (the powers of N cancel). This, however,

presents us with a puzzle. In the case without double points described in [3], the Hessian

was shown to vanish for the H− sector, i.e. j, k ≤ [n/2]. Let us see how this is compatible

with the scaling we have just seen. In the case, j, k ≤ [n/2],

H
(2)
jk ∼ a−(m+1)

n
∑

l=1

Resb̃l

[ d
√

B̃n(x̃) ω̃j ω̃k

dx̃ d
(

Z̃m(x̃)
√

B̃n(x̃)
)

]

, (2.66)

where

ω̃j =
L̃j(x̃)

√

B̃n(x̃)
dx̃. (2.67)

and L̃j(x̃) is a polynomial of degree [n/2] − 1. Note that the differential ω̃j ω̃k/dx̃ has

simple poles at x̃ = b̃l on the curve Σ−:

ω̃j ω̃k

dx̃
=

L̃j(x̃) L̃k(x̃)

B̃n(x̃)
dx̃ , (2.68)
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but has no pole at x̃ = ∞. For example for n odd, we find

ω̃j ω̃k

dx̃
−→ dx̃

x̃3
. (2.69)

This means that in the case with no double points, m = 0, the Hessian matrix ele-

ments (2.66) vanish identically:

H
(2)
jk ∼ a−1

n
∑

l=1

Resb̃l

[ ω̃j ω̃k

dx̃

]

= 0 , (2.70)

because the sum of all residues of a meromorphic differential on the compact near-critical

curve Σ− is identically zero. This is precisely the result found in [3]. On the other hand,

if m > 0, the Hessian matrix element will not vanish in general, because the differential on

the right-hand side of (2.66) has extra simple poles at the roots of

2Z̃ ′
m(x̃)B̃n(x̃) + Z̃m(x̃)B̃′

n(x̃) = 0 . (2.71)

This result is very significant because it highlights an important difference between the

case with and without double points. Even though we do not have control over the kinetic

terms of the glueball states, we take this behaviour of the Hessian matrix to signal that,

with double points, the masses of the glueball fields become very large in the DSL. This is

to be contrasted with the case without double points studied in [3], where the appearance

of the [n/2] massless glueballs was interpreted as evidence that supersymmetry is enhanced

to N = 2 in the DSL.

3. Matrix model loop functions

In [4], it was shown that the large N DSLs defined in [3, 4] map to double-scaling limits

of the auxiliary Dijkgraaf-Vafa matrix model, which are completely analogous to the “old”

matrix model double-scaling limits [14, 23]. The natural question that arises is which c ≤ 1

non-critical bosonic strings are dual to these matrix model DSLs [15]?

In general, according to the Dijkgraaf-Vafa correspondence [11 – 13], the matrix model

with polynomial superpotential Wq(Φ) is dual to the topological B model on a non-compact

Calabi-Yau geometry which is related to the matrix model spectral curve in a simple way

y2 = W ′
q(x)2 + fq−1(x) → uv + y2 = W ′

q(x)2 + fq−1(x) . (3.1)

The effect of the DSL is to focus in a neighbourhood of a certain singularity of the above

family of Calabi-Yau’s parametrized by the superpotential couplings and deformation poly-

nomial fq−1. For instance, in the cases considered in [3] where n branch points of the matrix

model spectral curve collide, we are in the proximity of a singularity of type An−1

uv + y2 = xn − µ , (3.2)

which is a generalization of the conifold singularity. These non-compact Calabi-Yaus can

generically be embedded in weighted projective spaces, for instance (3.2) goes to

uv + y2 = xn − µ

zk
, k =

2n

n + 2
(3.3)
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and have been argued to admit a Landau-Ginzburg description with a superpotential de-

termined by the defining equation (3.3) [17, 18] (see also [46, 47]). This is a generalization

of the CY/LG correspondence in the compact case. Furthermore, the superstring vacua

corresponding to these generic non-compact CYs in the proximity of such singularities are

expected to be described by non-critical superstring backgrounds of the form [8, 9]

{SL(2, R)/U(1) supercoset} × {N = 2 minimal model} (3.4)

and their mirror symmetry partners [48, 49]

{N = 2 Liouville} × {N = 2 minimal model} (3.5)

More precisely, in [8], it was proposed that the four-dimensional double-scaled Little String

Theory with 8 supercharges defined at such singularities has a holographic description in

terms of the above non-critical superstring backgrounds. In fact, this correspondence is at

the basis of the duality proposal of [3].

Therefore, since the topological B model in a neighbourhood of these CY singularities

should be dual to a topological twist of the above non-critical superstring backgrounds,

we expect the matrix model DSL to correspond precisely to the topological twist of these

non-critical superstring backgrounds. For the singularities (3.2)(3.3), we should consider

the A-twist of

SL(2, R)k/U(1) × SU(2)n/U(1) , k =
2n

n + 2
. (3.6)

The relation between strings on non-compact Calabi-Yaus and non-critical superstring

brackgrounds [18, 8] involving the N = 2 Kazama-Suzuki SL(2)/U(1) model or its mirror,

N = 2 Liouville theory [8, 48, 49], has been studied by several authors (see [50 – 52] and

references therein).

In this section, we will study the matrix model in the DSL and in particular derive exact

expressions for its loop functions at genus zero by means of the algorithm developed in [24].

From the loop functions, one can extract correlation functions of operators of the dual c ≤ 1

theory, as was done for 2d gravity coupled to (2, 2m−1) minimal models [22, 20, 21, 23]. We

will then check if the results that can be extracted from the matrix model are compatible

with the picture advocated above.

Given the matrix integral

Z =

∫

dΦ̂ e−N̂Tr V (Φ̂) , (3.7)

the p-point loop function is defined as

W (x1, . . . , xp) ≡ N̂p−2
〈

tr
1

x1 − Φ̂
· · · tr 1

xp − Φ̂

〉

conn
(3.8)

and it has the following genus expansion

W (x1, . . . , xp) =

∞
∑

g=0

1

N̂2g
W (g)(x1, . . . , xp) . (3.9)
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The 1-loop function is the Laplace transform of the expectation value of the so-called

macroscopic loop operator [20]

W (ℓ) =
1

N̂
Tr eℓ Φ̂ (3.10)

W (x) =

∫ ∞

0
dℓ e−xℓ 〈W (ℓ) 〉 =

1

N̂
〈Tr

1

x − Φ
〉 (3.11)

The macroscopic loop operator W (ℓ) corresponds to the insertion of a loop of length ℓ

on the two-dimensional discretized matrix model surface and encodes information on local

operators in the dual non-critical string [22, 20, 21, 23]. Roughly,

W (ℓ) ∼

∑

j≥0

ℓxjOj , xj > 0 , (3.12)

where the Oj ’s are operators in the c ≤ 1 system. The correlation functions of the Oj ’s

can then be extracted by shrinking the macroscopic loops, namely by studying the ℓ → 0

limit of 〈W (ℓ1)W (ℓ2)〉, 〈W (ℓ1)W (ℓ2)W (ℓ3)〉, etc. The n-point correlation functions of the

macroscopic loop operators can be found by evaluating the inverse Laplace transform of

the matrix model n-loop functions to be described below.

In [24], Eynard found a solution to the matrix model loop equations that allows to

write down an expression for the multiloop functions (3.8)(3.9) at any given genus in terms

of a special set of Feynman diagrams. The various quantities involved depend only on

the spectral curve of the matrix model and in particular one needs to evaluate residues of

certain differentials at the branch points of the spectral curve.

This algorithm and its extension to calculate higher genus terms of the matrix model

free energy [53] represent major progress in the solution of the matrix model via loop

equations [55 – 57, 54]. This is particularly important because, as reviewed in [4], the

orthogonal polynomial approach can be applied to multi-cut solutions in very special cases

only. Another nice feature of the loop equation algorithm is that it shows directly how the

information is encoded in the spectral curve. This fact allowed us make precise statements

about the DSL of multiloop functions and higher genus quantities simply by studying the

DSL of the spectral curve and its various differentials [4].

We will now give the expression of the 2 and 3-loop functions at genus zero using

Eynard’s results and then consider their DSL. Given the matrix model spectral curve for

an s-cut solution in the form (2.11)

y2 = Zm(x)2σ2s(x) , (3.13)

the genus zero 2-loop function is given by

W (x1, x2) = − 1

2(x1 − x2)2
+

√

σ(x1)

2
√

σ(x2)(x1 − x2)2

− σ′(x1)

4(x1 − x2)
√

σ(x1)
√

σ(x2)
+

A(x1, x2)

4
√

σ(x1)
√

σ(x2)
.

(3.14)
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The polynomial A is defined as

A(x1, x2) =

2s
∑

i=1

Li(x2)σ(x1)

x1 − σi
, (3.15)

where

Li(x2) =

s−2
∑

l=0

Li,lx
l
2 = −

s−1
∑

j=1

Lj(x2)

∫

Aj

dx
√

σ(x)

1

(x − σi)
(3.16)

and s is the number of cuts. The order s− 2 polynomials Lj(x) enter the expression of the

holomorphic one-forms ωj and are fixed by the requirement that these forms are canonically

normalized

ωj =
Lj(x)dx
√

σ(x)
,

∫

Ak

ωj = δjk , j, k = 1, . . . , s − 1 . (3.17)

The genus zero 2-loop function for coincident arguments is

W (x1, x1) = lim
x2→x1

W (x1, x2) = −σ′′(x1)

8σ(x1)
+

σ′(x1)
2

16σ(x1)2
+

A(x1, x1)

4σ(x1)

=
2s

∑

i=1

1

16(x − σi)2
− σ′′

i

16σ′
i(x − σi)

+
Li(x)

4(x − σi)
.

(3.18)

Another important object is the differential

dS2i−1(x1, x2) = dS2i(x1, x2) =

√

σ(x2)
√

σ(x1)





1

x1 − x2
− Li(x1)

√

σ(x2)
−

s−1
∑

j=1

Cj(x2)Lj(x1)



 dx1 ,

(3.19)

where i = 1, . . . , s and

Cj(x2) =

∫

Aj

dx
√

σ(x)

1

(x − x2)
. (3.20)

A crucial aspect of the one-form (3.19) is that it is analytic in x2 in the limit x2 → σ2i−1

or σ2i [24]

lim
x2→σi

dSi(x1, x2)
√

σ(x2)
=

1
√

σ(x1)





1

x1 − x2
−

s−1
∑

j=1

Lj(x1)

∫

Aj

dx
√

σ(x)

1

(x − x2)



 dx1 . (3.21)

The subtlety is that in the definition of (3.20), the point x2 is taken to be outside the loop

surrounding the j-th cut, whereas in (3.21), x2 is inside the contour. Note also that

A(x1, x2) = −
2s

∑

i=1





s−1
∑

j=1

Lj(x2)Cj(σi)





σ(x1)

x1 − σi
(3.22)

and in particular

A(x1, σi) = Li(x1)σ
′(σi) . (3.23)
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The expression for the genus zero 3-loop function is

W3(x1, x2, x3) = 2

2s
∑

i=1

Resσi
W2(x, x1)W2(x, x2)W2(x, x3)

(dx)2

dy

=
1

2

2s
∑

i=1

Z(σi)
2 σ′(σi) χ

(1)
i (x1)χ

(1)
i (x2)χ

(1)
i (x3) (3.24)

where the one-differentials χ
(1)
i ’s are defined by [15]

χ
(1)
i (x1) = Resx→σi

(

dSi(x1, x)

2y(x)

1

(x − σi)

)

=
1

2Z(σi)
√

σ(x1)

(

1

x1 − σi
+ Li(x1)

)

dx1 (3.25)

Incidentally, these expressions reproduce the results for the 2 and 3-loop functions in the

one-cut solution given in [21].

3.1 The double-scaling limit

As reviewed in section 2, in the neighbourhood of a singularity where m double points and

n branch points of the spectral curve come together

y2 → CZm(x)2Bn(x) (3.26)

where the double points zj and the branch points bi both tend to x0, which we can take,

without loss of generality, to be x0 = 0. The DSL involves first taking a → 0

x = ax̃ , zi = az̃i , bj = ab̃j

while keeping tilded quantities fixed. In the limit, we can define the near-critical curve Σ−:

Σ− : y2
− = Z̃m(x̃)2B̃n(x̃) . (3.27)

It was shown in [4] that in the DSL (2.37)

a → 0 , N → ∞ , ∆ ≡ Nam+n/2+1 = const

The matrix model p-loop functions behave as follows

Wp(x1, . . . , xp) dx1 . . . dxp → C1−p/2 ∆2−p W̃p(x̃1, . . . , x̃p) dx̃1 . . . dx̃p (3.28)

where the tilded quantities are the loop functions corresponding to the near-critical curve

Σ−. This result was derived by considering the limit of all the various differentials and

quantities that enter in Eynard’s algorithm.

As was emphasized in [3] and in section 2.5, the above results hold if the basis of A

and B-cycles on the spectral curve Σ is adapted to the factorization Σ → Σ+ ∪ Σ−. In

the case where two branch points collide, this means that one of the A-cycles of this basis
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shrinks to zero size. Thus, this singularity corresponds to a case where a single cut shrinks,

which is equivalent to a conifold singularity. Then we can set

y2
− = σ̃(x̃) = x̃2 − b̃2 . (3.29)

Dropping the tildes and setting C = 1, by (3.14)(3.28), the 2-loop and 3-loop functions

become

W (x1, x2) =
1

2(x1 − x2)2

(

x1x2 − b2

√

x2
1 − b2

√

x2
2 − b2

− 1

)

(3.30)

and

W3(x1, x2, x3) =
1

2∆

2
∑

i=1

σ′(σi) χ
(1)
i (x1)χ

(1)
i (x2)χ

(1)
i (x3) (3.31)

where the one-differentials χ
(1)
i ’s are defined by

χ
(1)
i (x1) =

1

2
√

x2
1 − b2

(

1

x1 − σi

)

dx1 . (3.32)

The inverse Laplace transform of these genus zero functions can be done explicitly (see

appendix A) to find

〈W (ℓ1)W (ℓ2) 〉 =

∞
∑

n=1

n In(bℓ1) In(bℓ2) (3.33)

〈W (ℓ1)W (ℓ2)W (ℓ3) 〉 =
8

b2∆

∞
∑

p,q,r=1

pqr
(

1 + (−1)p+q+r
)

Ip(bℓ1) Iq(bℓ2) Ir(bℓ3) (3.34)

where In(x) is the modified Bessel function of the first kind, which satisfies the equation

[

−
(

x
∂

∂x

)2

+ x2 + n2

]

ψ(x) = 0 . (3.35)

As we were not able to find a closed analytic expression for the inverse Laplace transform

of the double-scaled loop functions for the more complicated singularities, from now on we

will restrict our attention to the case of the conifold singularity.

3.2 Comparison between matrix model DSL and c = 1 non-critical string at

selfdual radius

How do we interpret eqs.(3.33)(3.34)? In [22], a precise dictionary between macroscopic

loop operators on the matrix model side and sum of local operators of the dual bosonic

non-critical string on the other was proposed. This applied to the matrix model DSLs

dual to the (2, 2m − 1) minimal models coupled to 2d gravity. The main tool to establish

such dictionary was the Wheeler-DeWitt equation satisfied both by the macroscopic loop

amplitudes and by the wavefunctions of the non-critical string operators in the so-called

”conformal background”. In the following, we will apply the same philosophy as [22]

starting from eq.(3.33).
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First of all, eq. (3.12) is not exact. In fact from the expression of the matrix model

resolvent or 1-loop function in the DSL, one can find that the series on the r.h.s contains

terms that diverge in the ℓ → 0 limit. This also happened in the cases studied in [22] (and

reviewed in [23]). These terms are due to small area divergences, and their coefficients are

analytic in the coupling constants. They are interpreted as non-universal contributions and

are not relevant in the comparison between the matrix model and the non-critical string.

These divergences in the ℓ → 0 limit are expected to disappear for higher loop functions.

In fact, the 2 and 3-point macroscopic loop correlators, eqs.(3.33) and (3.34), do not show

any divergence in the limit ℓ → 0, as was the case for the models considered in [22].

The crucial point [22] is that wavefunctions of local non-critical operators are expected

to satisfy the Wheeler-DeWitt equation for the c ≤ 1 system coupled to 2d gravity in the

minisuperspace approximation, where only the zero mode φ0 of the Liouville field is taken

into account, ℓ → eγφ0/2

(

−
(

ℓ
∂

∂ℓ

)2

+ 4µ2ℓ2 + ν2

)

ψO(ℓ) = 0 . (3.36)

The coefficient ν2 is related to the conformal dimension ∆0(O) of the undressed matter

operator by

ν2 =
8

γ2

[

Q2

8
− (1 − ∆0(O))

]

=
4

γ2

(

α − Q

2

)2

(3.37)

and α is the Liouville charge associated to the dressing operator eαφ. The Liouville back-

ground charge Q and the exponent γ are given by

Q =
2

γ
+ γ , γ =

1√
12

(√
25 − cM −

√
1 − cM

)

, (3.38)

where cM is the central charge of the matter sector. The Liouville central charge cL is

cL = 1 + 3Q2 , cL + cM = 26 .

Solutions of (3.36) are linear combinations of Iν(2µℓ) and Kν(2µℓ), the modified Bessel

functions of the first and second kind respectively.

Comparison with (3.33) suggests a change of basis from the operators {Oi} considered

in (3.12) to a new basis {σn}

W (ℓ) =
∞
∑

n=1

ℓnOn =
∞
∑

n=1

n
In(bℓ)

bn
σn . (3.39)

Instead of using ℓ, ℓ2, . . . as a basis to expand the macroscopic loop operator, we can use the

basis I1, I2, . . .. Since as ℓ → 0, In(bℓ) ∼ (bℓ)n, the change of basis is upper triangular and

furthermore the coefficients of this map are analytic functions of b2. The wavefunctions of

the operators σn are given by shrinking one of the loops

ψn(ℓ) = 〈W (ℓ)σn 〉 . (3.40)
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From (3.33) and (3.39) we find

ψn(ℓ) = 〈W (ℓ)σn 〉 = bnIn(bℓ) . (3.41)

This wavefunction satisfies the differential equation

(

−
(

ℓ
∂

∂ℓ

)2

+ 4µ2ℓ2 + n2

)

ψn(ℓ) = 0 , b = 2µ . (3.42)

It is remarkable that in the case of the conifold singularity the wavefunctions extracted

from the matrix model, eq. (3.41), satisfy the Wheeler-DeWitt equation derived in the

minisuperspace approximation exactly, eq. (3.36), as the cases studied in [22]. This may

not be true for the more complicated singularities studied in [3], (eq. (3.2) for n > 2).

However, contrary to the case of minimal model coupled to 2d gravity studied in [22],

the wavefunctions (3.41) are concentrated in the region ℓ ∼ eγφ0/2 ≫ 1 whereas they vanish

in the ℓ → 0 limit. On the other hand, in [58, 59], it was argued that if a wavefunction

is to correspond to a physical operator in the dual c ≤ 1 non-critical bosonic string then

it should have support in the region ℓ ≪ 1, which corresponds to infinitesimally small

worldsheet metrics eγφ0 |dz|2. Thus, it should behave like a modified Bessel function of

the second kind, Kν(2µℓ). We can then conclude that the operators σn do not correspond

to local physical observables because they do not satisfy this requirement. The Liouville

operator that dresses them will not satisfy the Seiberg bound α ≤ Q
2 [58, 59].

Nevertheless, we will see that this is actually not a contradiction. As explained at

the beginning of section 3 , we expect the matrix model DSL to be dual to the A-twist of

the N = 2 supersymmetric coset SL(2)k/U(1) at level k = 1, the topological cigar, which

was shown in [16] to be equivalent to the c = 1 system at selfdual radius (see also [25 –

27] for a recent analysis). This equivalence was later explained in [17], which showed

the relation with the topological theory at a conifold singularity. By the Dijkgraaf-Vafa

correspondence [11 – 13, 19], we then expect the matrix model with near-critical spectral

curve (3.29), which is relevant for the conifold singularity, to capture the c = 1 theory at

selfdual radius.

The key result is that we can actually identify the operators σn with a subset of the

operators in the c = 1 theory at selfdual radius. In the notation of [60], we find that

σn → Y −
n
2
, n
2

= cc̄ ei
√

2nX0/2e
√

2(1+n/2)φ , n = 1, 2, . . . (3.43)

This identification is due to the following observations. Setting cM = 1 in (3.38) we find

γ =
√

2 , Q = 2
√

2 , (3.44)

and from the Wheeler-DeWitt equation (3.42)

ν2 =
4

γ2

(

α − Q

2

)2

= 2
(

α −
√

2
)2

= n2 , n = 1, 2, . . . (3.45)
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Observe that ν2 is invariant under α → Q − α. This corresponds to the fact that the

conformal dimension of the Liouville operator eαφ

∆(α) =
1

2
α(Q − α) (3.46)

is invariant under the reflection α → Q−α. But, we also know from (3.41) that the wave-

function of the Liouville operator is not concentrated in the region ℓ << 1 and therefore

the corresponding α does not satisfy the Seiberg bound α ≤ Q
2 =

√
2. The solutions to

(3.45) compatible with this condition are

αn =
√

2 +
n√
2

, n = 1, 2, . . . (3.47)

in agreement with eq. (3.43). This is to be contrasted with the solutions

α̃n = Q − αn =
√

2 − n√
2

, n = 1, 2, . . .

The operators (3.43) indeed correspond to a subset of the full observables in the topo-

logical cigar which is given by

Y +
n
2

,−n
2

= cc̄ e−i
√

2nX0/2e
√

2(1−n/2)φ , n = 0, 1, 2, . . .

Y −
n
2

, n
2

= cc̄ ei
√

2nX0/2e
√

2(1+n/2)φ , n = 0, 1, 2, . . . (3.48)

and their duals [16, 25, 26]

Y +
n
2

, n
2

= cc̄ ei
√

2nX0/2e
√

2(1−n/2)φ , n = 0, 1, 2, . . .

Y −
n
2

,−n
2

= cc̄ e−i
√

2nX0/2e
√

2(1+n/2)φ , n = 0, 1, 2, . . . (3.49)

As we see, the full spectrum also contains operators that satisfy the Seiberg bound.

In summary, after performing the change of basis (3.39), we were able to show that

the matrix model DSL corresponding to the conifold singularity, eq. (3.29), describes a

subset of the full spectrum of the c = 1 non-critical bosonic theory at selfdual radius. In

particular, it contains ”wrong-branch” operators, namely operators that do not satisfy the

Seiberg bound. Therefore, at least for the case of the conifold singularity, we see an explicit

relation between the DSL of the Dijkgraaf-Vafa matrix model and the topologically twisted

non-critical superstring backgrounds (3.6).

4. Comparison with N = 2 Seiberg-Witten theory

In this section we will further study and discuss the enhancement to N = 2 supersymmetry

of the N = 1 effective action for the case with no double points. In particular, we will

compare the double-scaling limit (2.37) of the third derivatives of the matrix model free

energy
∂3F0

∂Si∂Sj∂Sk
(4.1)

– 22 –



J
H
E
P
0
4
(
2
0
0
7
)
0
7
8

with
∂3F

∂ai∂aj∂ak
, (4.2)

where F is the prepotential of an N = 2 pure SU(n) Seiberg-Witten theory in the neigh-

bourhood of an An−1 Argyres-Douglas superconformal fixed point. It is understood that

Si, ai, i = 1, . . . , [(n−1)/2], are the periods of the matrix model and Seiberg-Witten differ-

entials around the cycles in the critical region. This means that we have chosen the same

basis of one-cycles on the spectral and Seiberg-Witten curves as described in section 2.5.

The goal is to provide a further consistency check that in the double-scaling limit

(2.37) the F-terms of the large N theory are equivalent to those of an N = 2 Seiberg-

Witten model in the neighbourhood of an Argyres-Douglas singularity. We will exploit

exact identities that relate the third derivatives of the genus zero matrix model free energy

and the Seiberg-Witten prepotential to a sum of residues on the spectral curve and Seiberg-

Witten curve [39, 38]

∂3F0

∂Si∂Sj∂Sk
=

2n
∑

l=1

Resσl

(

ωiωjωk

dxdy

)

(4.3a)

∂3F
∂ai∂aj∂ak

=
2n
∑

l=1

Ressl

(

ω̂iω̂jω̂k

dxTSW

)

(4.3b)

y2
SW = Pn(x)2 − 4Λ2n , TSW ≡ P ′

ndx

ySW
= d log(Pn + ySW ) (4.3c)

As before, the ωi, ω̂j ’s are canonically normalized holomorphic one-differentials on the

matrix model and Seiberg-Witten curves

∂ydx

∂Si
= ωi ,

∂λSW

∂aj
= ω̂j . (4.4)

and σl, sl are the zeroes of these curves. These formulae and their generalizations were used

in [38, 39] to derive a set of WDVV-like equations in Seiberg-Witten [40] and Dijkgraaf-Vafa

theories.

For the particular matrix model singularities we are interested in, where n branch

points collide and there are no double-points, the relevant matrix model spectral curve

(2.22)

y2 =
1

(Nε)2
(

W ′(x)2 + fℓ−1(x)
)

= Pn(x)2 − 4Λ2n (4.5)

coincides with the Seiberg-Witten curve of an SU(n) theory

y2
SW = Pn(x)2 − 4Λ2n (4.6)

where

Pn(x) → 1

Nε
W ′

n(x) (4.7)

The crucial fact is that, in the double-scaling limit (2.37)

TSW → an/2dy− , dy → an/2dy− , (4.8)
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so that
∂3F0

∂Si∂Sj∂Sk
→

(

Nεan/2+1
)−1

n
∑

l=1

Resσ̃l

(

ω̃iω̃jω̃k

dx̃dy−

)

,

∂3F
∂ai∂aj∂ak

→
(

an/2+1
)−1

n
∑

l=1

Resσ̃l

(

ω̃iω̃jω̃k

dx̃dy−

)

, (4.9)

where the ω̃i’s, i = 1, . . . , [(n − 1)/2] are holomorphic differentials on the near-critical

spectral curve

Σ− : y2
− = B̃n(x̃) , (4.10)

and the σ̃l’s are the n zeroes of the polynomial B̃n(x̃). We see that the third derivatives

in (4.9) have exactly the same dependence on the near-critical spectral curve.

This relation between the double-scaling limit of a Dijkgraaf-Vafa matrix model and

relative gauge theory defined at a singularity where n branch points collide and an N = 2

Seiberg-Witten theory with gauge group SU(n) in the proximity of the analogous An−1

Argyres-Douglas singularity, which was shown to hold at genus zero, should extend to the

higher genus F-terms as well. In particular, if the Dijkgraaf-Vafa correspondence holds

beyond the planar limit, the double-scaling limit of the higher genus terms of the matrix

model free energy should be related to the higher genus Seiberg-Witten prepotentials of an

SU(n) theory close to an An−1 Argyres-Douglas superconformal fixed point.

This correspondence also makes contact with the work of Nekrasov [61], where it was

conjectured that the full Seiberg-Witten partition function is actually the tau-function of

a KP hierarchy and that it is related to the theory of a chiral boson living on the Seiberg-

Witten curve. In general, a matrix model partition function is the partition function of a

chiral boson living on the matrix model spectral curve itself and is a tau-function of the

KP hierarchy [62, 19].

It is shown in [4] that, in the double-scaling limit, the higher genus terms of the matrix

model free energy with spectral curve Σ behave as follows

Fg(Σ) →
(

Nεan/2+1
)2−2g

Fg(Σ−) , (4.11)

where Σ− is the near-critical spectral curve (4.10) and Fg(Σ−) is the related genus g matrix

model free energy which can be evaluated by means of the algorithms developed in [24, 53].

Then the correspondence between the double-scaled matrix model and the N = 2 Seiberg-

Witten theory in the neighbourhood of an Argyres-Douglas singularity would imply that

Fg(Σ) →
(

an/2+1
)2−2g

Fg(Σ−) . (4.12)

where Fg(Σ−) is again the genus g matrix model free energy associated to the near-critical

spectral curve as in (4.11).

Based on these arguments, the Seiberg-Witten partition function in the proximity of

an Argyres-Douglas singularity would be related to the theory of a chiral boson living on

the near-critical spectral curve Σ−.
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5. Discussion

The analysis performed in this paper is a preliminary step towards showing that the matrix

model double-scaling limits (DSLs) introduced in [3] and further studied in [4] are dual to

the topological twist of the non-critical superstring backgrounds (3.6)

SL(2, R)k/U(1) × SU(2)n/U(1) , k =
2n

n + 2
. (5.1)

These non-critical superstring backgrounds are dual to double-scaled Little String Theories

in four dimensions [8] and to the large N double-scaling limit of certain N = 1 SU(N)

gauge theories in a partially confining phase [3]. Actually, the matrix model in question is

precisely the matrix model that allows to evaluate the F-terms of these four-dimensional

N = 1 theories, following the seminal work of Dijkgraaf and Vafa [11 – 13].

Using the solution of the loop equations provided by Eynard for a general matrix model

multicut solution [24], we have found the expression of 2 and 3-loop matrix functions in

the DSL. From these, one can in principle extract the dictionary between matrix model

macroscopic loop operators and operators of the dual c ≤ 1 non-critical bosonic string, as

was done in [22] for the (2, 2m − 1) minimal models coupled to 2d gravity.

In the simplest case, where the matrix model DSL is associated to a conifold singu-

larity (n = 2 in (5.1)), we have shown explicitly that the spectrum and wavefunctions

of the operators of the non-critical bosonic string that can be extracted from the matrix

model macroscopic loop correlators are a subset of the full spectrum of the A-twist of the

SL(2)/U(1) supercoset at level k = 1 or equivalently the c = 1 non-critical bosonic string

at selfdual radius [16 – 18].

An outstanding problem is to determine the ground ring of the twisted non-critical

superstring background (3.6) and see the geometry (3.2) emerge from the ring relations

as was done in the c = 1 case. The results of [27, 50] would be particularly useful in

this respect. One could then couple the analysis of the ground ring with the study of the

topological branes of (3.6) and essentially derive the matrix model dual, as was done in [63 –

65] for minimal string theories. Finally, it would also be interesting to study the relation

between the matrix model DSL and a topological Landau-Ginzburg model generalizing the

analysis carried out in [46, 47] for the conifold/c = 1 case.

We have also carried out another check that the F-terms of the large N double-scaled

theories considered in [3] are equivalent to those of an N = 2 Seiberg-Witten model in

the neighbourhood of an Argyres-Douglas singularity. This also suggests that the all-genus

Seiberg-Witten partition function in a neighbourhood of such singularities is equivalent

to the double-scaled matrix model partition function corresponding to the near-critical

spectral curve (4.10), which makes contact with the work of Nekrasov [61].

Acknowledgments. We would like to thank Nick Dorey, Prem Kumar, Emiliano Imeroni,

Marcos Mariño, Asad Naqvi and Annamaria Sinkovics for discussions.
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A. The macroscopic loop correlators for the topological cigar

In this appendix, we will evaluate the inverse Laplace trasform of the double-scaled 2 and

3-loop functions (3.30)(3.31) and derive eqs.(3.33)(3.34).

The inverse Laplace transfom of the 2-loop function is given by the double Bromwich

integral

〈W (ℓ1)W (ℓ2)〉 =
1

(2πi)2

∫ ∫

1

2(x1 − x2)2

(

x1x2 − b2

√

x2
1 − b2

√

x2
2 − b2

− 1

)

eℓ1x1+ℓ2x2dx1dx2

A generic 2-loop genus zero function has no pole at x1 = x2, (3.18), and the same is true

for the above integrand. Therefore, we can deform the contours of integration and we find

〈W (ℓ1)W (ℓ2)〉 =
1

(2πi)2

∫

A

∫

A

1

2(x1 − x2)2

(

x1x2 − b2

√

x2
1 − b2

√

x2
2 − b2

− 1

)

eℓ1x1+ℓ2x2dx1dx2

where A is the loop that surrounds the cut [−b, b] in both the x1 and x2 planes. With the

change of variables

xi =
b

2

(

ti +
1

ti

)

〈W (ℓ1)W (ℓ2)〉 =
1

(2πi)2

∫

γ0

∫

γ0

1

(1 − t1t2)2
e

b
2
ℓ1(t1+1/t1)+ b

2
ℓ2(t2+1/t2)dt1dt2

where γ0 is a counterclockwise loop around ti = 0. By the identities

e
b
2
ℓi(ti+1/ti) =

∞
∑

n=−∞
In(bℓi) tni

1

(1 − t1t2)2
=

∞
∑

m=1

m(t1t2)
m−1

where In(x) is the modified Bessel function, we find (3.33)

〈W (ℓ1)W (ℓ2)〉 =

∞
∑

n=1

n I−n(bℓ1) I−n(bℓ2) =

∞
∑

n=1

n In(bℓ1) In(bℓ2) . (A.1)

As for the 3-loop function we can proceed in a similar manner. First of all

χ
(1)
b (xi) =

1

2
√

x2
i − b2

(

1

xi − b

)

dxi =
2dti

b(1 − ti)2

χ
(1)
−b(xi) =

1

2
√

x2
i − b2

(

1

xi + b

)

dxi =
2dti

b(1 + ti)2

Since

W3(x1, x2, x3) =
1

2∆

(

σ′(b) χ
(1)
b (x1)χ

(1)
b (x2)χ

(1)
b (x3) + σ′(−b) χ

(1)
−b(x1)χ

(1)
−b(x2)χ

(1)
−b(x3)

)
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we find

〈W (ℓ1)W (ℓ2)W (ℓ3) 〉 =

8

b2∆

1

(2πi)3

∫

γ0

∫

γ0

∫

γ0

(

3
∏

i=1

dti
(1 − ti)2

eℓi
b
2
(ti+1/ti) −

3
∏

i=1

dti
(1 + ti)2

eℓi
b
2
(ti+1/ti)

)

=
8

b2∆

∞
∑

p,q,r=1

pqr
(

1 + (−1)p+q+r
)

Ip(bℓ1) Iq(bℓ2) Ir(bℓ3) . (A.2)

B. Details of the double-scaling limit

In this appendix, we consider the DSL of various quantities defined on the curve Σ (2.11).

This is most conveniently done in the basis {Ãi, B̃i} of 1-cycles described in section 2.5. In

particular, for i ≤ [n/2] these are cycles on the near-critical curve Σ− in the DSL.

The key quantities that we will need are the periods

Mij =

∮

B̃j

xi−1

√

σ(x)
dx , Nij =

∮

Ãj

xi−1

√

σ(x)
dx . (B.1)

First of all, let us focus on Nij where j ≤ [n/2], but i arbitrary. By a simple scaling

argument, as a → 0,

Nij =

∫ b+
(j)

b−
(j)

xi−1

√

B(x)
dx −→ ai−n/2

∫ b̃+
(j)

b̃−
(j)

x̃i−1

√

B̃(x̃)
dx̃ = ai−n/2 f

(N)
ij (b̃l) , (B.2)

for some function f
(N)
ij of the branch points of Σ−. Here, b±(j) are the two branch points

enclosed by the cycle Ãj . A similar argument shows that Mij scales in the same way:

Mij −→ ai−n/2 f
(M)
ij (b̃l) . (B.3)

So both Nij and Mij, for i, j,≤ [n/2], diverge in the limit a → 0. On the contrary, by using

a similar argument, it is not difficult to see that, for j > [n/2], Nij and Mij are analytic

as a → 0 since the integrals are over non-vanishing cycles.

In summary, in the limit a → 0, the matrices N and M will have the following block

structure

N −→
(

N−− N
(0)
−+

0 N
(0)
++

)

, M −→
(

M−− M
(0)
−+

0 M
(0)
++

)

, (B.4)

where by − or + we denote indices in the ranges {1, . . . , [n/2]} and {[n/2] + 1, . . . , s − 1}
respectively. In (B.4), N−− and M−− are divergent while the remaining quantities are

finite as a → 0.

We also need the inverse L = N−1. In the text, we use the polynomials Lj(x) =
∑s−1

k=1 Ljkx
k−1, which enter the expression of the holomorphic 1-forms associated to our

basis of 1-cycles,
∮

Ãi

ωj = δij . (B.5)
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These 1-forms are equal to

ωj(x) =
Lj(x)
√

σ(x)
dx =

∑s−1
k=1 Ljkx

k−1

√

σ(x)
dx ,

∮

Ai

ωj(x) = δij (B.6)

where i, j = 1, . . . , s − 1. From the behaviour of N in the limit a → 0, we have

L = N−1 −→





N−1
−− N
0

(

N
(0)
++

)−1



 , N = −N−1
−− N

(0)
−+

(

N
(0)
++

)−1
. (B.7)

Since N−− is singular we see that L is block diagonal in the limit a → 0. This is just an

expression of the fact that the curve factorizes Σ → Σ− ∪Σ+ as a → 0. In this limit, using

the scaling of elements of Ljk, we find, for j ≤ [n/2],

ωj −→
∑[n/2]

k=1 (f (N))−1
jk x̃k−1

√

B̃(x̃)
dx̃ = ω̃j . (B.8)

the holomorphic 1-forms of Σ−. While for j > [n/2],

ωj −→
∑s−1

k>[n/2](N
(0)
++)−1

jk xk−n/2−1

√

F (x)
dx , (B.9)

are the holomorphic 1-forms of Σ+.
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